 2U Aug 12, 2019
• # A. Array Without Local Maximums

time limit per test: 2 seconds
memory limit per test: 512 megabytes
inputstandard input
outputstandard output

Ivan unexpectedly saw a present from one of his previous birthdays. It is array of 𝑛 numbers from 1 to 200. Array is old and some numbers are hard to read. Ivan remembers that for all elements at least one of its neighbours ls not less than it, more formally:

𝑎1≤𝑎2,

𝑎𝑛≤𝑎𝑛−1 and

𝑎𝑖≤𝑚𝑎𝑥(𝑎𝑖−1,𝑎𝑖+1) for all 𝑖 from 2 to 𝑛−1.

Ivan does not remember the array and asks to find the number of ways to restore it. Restored elements also should be integers from 1 to 200. Since the number of ways can be big, print it modulo 998244353.

## Input

First line of input contains one integer 𝑛 (2≤𝑛≤105) — size of the array.

Second line of input contains 𝑛 integers 𝑎𝑖 — elements of array. Either 𝑎𝑖=−1 or 1≤𝑎𝑖≤200. 𝑎𝑖=−1 means that 𝑖-th element can’t be read.

## Output

Print number of ways to restore the array modulo 998244353.

## Examples

#### input

3
1 -1 2

#### output

1

#### input

2
-1 -1

#### output

200

## Note

In the first example, only possible value of 𝑎2 is 2.

In the second example, 𝑎1=𝑎2 so there are 200 different values because all restored elements should be integers between 1 and 200.

## Solution

dp[i][j][k]表示当第i个数为j，第i-1个数与第i个数之间的大小关系为k时的方案数目。

(k = 0: a[i - 1] < a[i], k = 1: a[i - 1] = a[i], k = 2: a[i - 1] > a[i])

dp[i][j] = $\sum_{x=1}^{j-1}$ (dp[i - 1][x] + dp[i - 1][x] + dp[i - 1][x])

dp[i][j] = dp[i - 1][j] + dp[i - 1][j] + dp[i - 1][j]

dp[i][j] = $\sum_{x=j+1}^{200}$ (dp[i - 1][x] + dp[i - 1][x])

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn = 1e5 + 10;
const int mod = 998244353;
int n,  a[maxn];
ll sum, dp[maxn];

{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9') { x = (x << 3) + (x << 1) + ch - '0'; ch = getchar(); }
return x * f;
}

int main()
{
for (int i = 1; i <= n; i++) a[i] = read();
if (~a) dp[a] = 1;
else for (int j = 1; j <= 200; j++) dp[j] = 1;
for (int i = 2; i <= n; i++)
{
sum = 0;
for (int j = 1; j <= 200; j++)
{
if (a[i] == -1 || a[i] == j)
{
dp[i][j] = sum;
dp[i][j] = (dp[i - 1][j] + dp[i - 1][j] + dp[i - 1][j]) % mod;
}
sum = (sum + dp[i - 1][j] + dp[i - 1][j] + dp[i - 1][j]) % mod;
}
sum = 0;
for (int j = 200; j >= 1; j--)
{
if (a[i] == -1 || a[i] == j) dp[i][j] = sum;
sum = (sum + dp[i - 1][j] + dp[i - 1][j]) % mod;
}
}
sum = 0;
for (int j = 1; j <= 200; j++) sum = (sum + dp[n][j] + dp[n][j]) % mod;
printf("%lld\n", sum);
return 0;
}